Honeycombs from Hermitian Matrix Pairs, with Interpretations of Path Operators and S Ln Crystals
نویسندگان
چکیده
Knutson and Tao’s work on the Horn conjectures used combinatorial invariants called hives and honeycombs to relate spectra of sums of Hermitian matrices to Littlewood-Richardson coefficients and problems in representation theory, but these relationships remained implicit. Here, let M and N be two n× n Hermitian matrices. We will show how to determine a hive H(M,N) = {Hi jk} using linear algebra constructions from this matrix pair. With this construction, one may also define an explicit Littlewood-Richardson filling (enumerated by the Littlewood-Richardson coefficient cμν associated to the matrix pair). We then relate rotations of orthonormal bases of eigenvectors of M and N to deformations of honeycombs (and hives), which we interpret in terms of the structure of crystal graphs and Littelmann’s path operators. We find that the crystal structure is determined more simply from the perspective of rotations than that of path operators. Résumé. Le travail de Knutson et Tao sur les conjectures de Horn utilisés invariants combinatoires appelé ruches et nids d’abeilles de trait spectres des sommes de matrices hermitiennes de Littlewood Richardson coefficients et les problèmes de la théorie de la représentation, mais ces relations demeurent implicites. Ici, laissez M et N etre deux n × n matrices hermitiennes. Nous allons montrer comment déterminer un ruche H(M,N) = {Hi jk} utilisant constructions d’algébre linéaire de cette paire de matrices. Avec cette construction, on peut également définir une explicite de remplissage LittlewoodRichardson (énumérés par la Littlewood -Richardson coefficient cμν associé á la matrice paire) . Nous rapportons ensuite des rotations de bases orthonormées de vecteurs propres de M et N á des déformations de nids d’abeilles (et ruches), que nous interprétons en fonction de la structure des graphes en cristal et des exploitants de chemins de Littelmann. On retrouve que la structure de cristal est déterminée plus simple du point de vue de la rotation que celle des opérateurs de chemin. Mots-clés: matrices hermitiennes, nids d’abeilles, des graphiques cristal.
منابع مشابه
Hermitian solutions to the system of operator equations T_iX=U_i.
In this article we consider the system of operator equations T_iX=U_i for i=1,2,...,n and give necessary and suffcient conditions for the existence of common Hermitian solutions to this system of operator equations for arbitrary operators without the closedness condition. Also we study the Moore-penrose inverse of a ncross 1 block operator matrix and. then gi...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملالگوریتم مستطیل آبشاری و ماتریس انتقال در شبکه های کوتاه ترین مسیر بادور
Shortest path problem is among the most interesting problems in the field of graph and network theory. There are many efficient matrix based algorithms for detecting of shortest path and distance between all pairs of this problem in literature. In this paper, a new exact algorithm, named Cascade Rectangle Algorithm, is presented by using main structure of previous exact algorithms and developin...
متن کاملConvergence Properties of Hermitian and Skew Hermitian Splitting Methods
In this paper we consider the solutions of linear systems of saddle point problems. By using the spectrum of a quadratic matrix polynomial, we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method.
متن کاملInvestigation on the Hermitian matrix expression subject to some consistent equations
In this paper, we study the extremal ranks and inertias of the Hermitian matrix expression $$ f(X,Y)=C_{4}-B_{4}Y-(B_{4}Y)^{*}-A_{4}XA_{4}^{*},$$ where $C_{4}$ is Hermitian, $*$ denotes the conjugate transpose, $X$ and $Y$ satisfy the following consistent system of matrix equations $A_{3}Y=C_{3}, A_{1}X=C_{1},XB_{1}=D_{1},A_{2}XA_{2}^{*}=C_{2},X=X^{*}.$ As consequences, we g...
متن کامل